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A Theory of Conditional Information
with Applications

Philip G. Calabrese

Abstract reality and the knowledge thereof; the premise of philo-
The development of conditional propositions, deduction sophy is the whole of all reality and the ability to know
between conditionals, and boolean-like operations on it. So it is impossible to escape from conditions. Con-
conditionals, and their associated probabilities are here ditional propositions are a basic intellectual element more
unified in terms of boolean relations of the form "b = 0" so than so-called "unconditioned" boolean propositions.
defined on an initially relation-free algebra of boolean
polynomials that transcends an initial domain of dis- Another way to say this is that all information has
course. The conditional proposition (alb) is assigned the context, which is just another word for conditions or
conditional probability P(alb), which is different from the premises. So in combining information with differing
probability that (alb) is a tautology. The resulting alge- contexts, those contexts must be carried along with the
braic techniques are demonstrated in several examples such consequent action (or equivalent proposition) that together
as by simplifying a circular rule-based expert system and form the premise-conclusion pair. This is a fundamental
removing its circularity and by deriving logical and prob- unit of thought, every proposition is really such a pair.
ability formulas for keeping communication lines open. When a set of propositions has a common context we tend

to drop the context and represent just the consequent
Introduction proposition. Thus an infinite regress is avoided. In the

Among the various concepts1 residing at the nexus of so final analysis all information has a common context,
many intellectual subtleties that have come into scientific namely the whole universe of mind & matter in which
consciousness because of our efforts to replicate human that information fits and has its meaning.
information processing in computers (Artificial Intelli-
gence), none is more daunting than the central notion of a Truth, Implication and Uncertainty. Now
"conditional proposition (in logic), a conditional event (in matters are well understood as long as conditional
probability) - conditional information in general. propositions are evaluated as being "true" according as

they are true in all cases, but false if even one counter-

Conditional Information example can be found, one case in which the antecedent is
Actually, all information is inherently conditional: It is true but the consequent is false. A conditional "if b then
quite impossible to propound a proposition without a" is wholly true, true in all cases, a theorem, a so-called
assumptions! These assumptions are the conditions or tautology, necessarily true - whenever every instance
context of the information. However, some assumptions (case) of b is also an instance of a. In symbols, b < a.
are always implicit rather than explicit. This fact Of Letting A mean "and", v mean "or" and -, mean "not", this
intellectual life is enshrined by science and philosophy in can also be said in several other equivalent ways: "In all
the axiomatic method, which ever seeks to prove conse- cases either proposition a is true or proposition b is
quences from assumed postulates. The final premise of fases that i s, a v true a A b is
Science is material existence and knowledge thereof; the false"; that is, a v --b = 1. Equivalently, a A b b, a v b
final premise of religion is God and the knowledge there- = a, --a A b = 0.
of. The premise of cosmology is the whole of material

But when some uncertainty is introduced, the subtle
difficulties that arise become almost insuperable. ForManuscript received .1992. This work was done while instance, while standard probability theory has quite

the author held a National Research Council Senior Research ad equat e stan dard p a bil itruth eory"un sond ite

Associateship at the Research, Development. Test and adequately quantified the partial truth in "unconditioned"

Evaluation Division (NRaD). Code 421, Naval Command, statements residing in any measurable boolean algebra, the
Control and Ocean Surveillance Center (NCCOSC) in San treatment of conditionals in standard probability theory is ., F or
Diego, California 92152. Financial support is gratefully decidedly rudimentary. 2 There is only a "conditional -
acknowledged from Mr. Michael Mudurian of the Joint probability", P(alb), of "a given b", which is the ratio of CRAM
Directors of the Laboratories and Dr. Ralph Wachter of the TAB
Office of Naval Research. . )otjnced
I L. Zadeh [211 has explored the inherent "fuzziness" 2 Those who have made serious attempts, with some success, 'c~itO:ao

(imprecision) of many of our most useful words; G. Shafer to algebraically develop conditionals include G. Boole (21, B.
[201 has explored the ubiquitous uncertainty in information in Russell [18], B. De Finetti (81, Ernest Adams Ill, G. Schay

terms of "support" for "beliefs". The approach here is more [19), D. Lewis (14), N. Nilsson [151. P. Calabrese [31. T.

classical and perhaps less ambitious, being an extension of Hailperin [101 and I.R. Goodman, HlT. Nguyen & E. Walker bution
boolean algebra and probability theory to conditionals. (12] and others, but the list is not long. Availabillt
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"the probabilities of the instances of (a A b) to the conditionals and for conditioning upon new possibly
probability of the instances of b. While the conditional conditional information. Finally, we all routinely use
probability, P(alb), is essential to probabilists for such constructions as "if whenever you walk across the

quantifying the partial truth of (aib), its divergence3 from street you look both ways, then you will cross safely."

P(a v -,b) whenever P(b) and P(alb) are both less than 1made in n this regard E. Adams [I] has posed an interesting
dramatizes the fact that new distinctions must be made in
the realm of conditionals and new structures identified as example: An object of unknown color may be red (r),

soon as non-trivial amounts of uncertainty are incorpor- yellow (y) or blue (b) with equal probability. What is the

ated. No longer can the material conditional proposition new probability of blue upon learning that 'if the object is
not red it is blue'? Thus, P( b I (b I -,r) ) = ? and more

(a v -,b) be used to measure the truth of a conditional (alb) importantly, how should this probability be calculated?
in all circumstances. 4 It is also unfortunate that so many
authors refer to (a v -,b) as "material implication" when in Conditionals also arise naturally in expert systems, which

fact (a v -nb) is not an implication - notwithstanding that tend to be organized in terms of "if - then -" rules.
Difficulties arise when these sets of rules are circular or

it is often expressed as "b a"; rather, (a v --,b) is a prop- inconsistent; simplification can identify and eliminate
osition or an event. By contrast, material implication is a redundancies and inconsistencies and can also relieve
relation defined by the boolean equation (a v -,b = 1) or computational complexities. Conditionals can also be
equivalently by (-,a A b = 0). There is all too little expli- useful in managing data bases, combining data,
cit distinction made between absolutely true statements facilitating queries and quantifying partial truth.
and higher order statements of the absolute truth of a
statement. The statement that proposition b is wholly Overview. A section on finite theory, illustrated with
true is not the same as the (wholly true) statement b. This simple examples, is followed by an applications section
distinction is crucial when it comes time to put a separate containing somewhat more elaborate examples. The
probability measure on the various possible deductively theory section provides a new, fundamental approach to
closed sets of propositions and conditional propositions conditional propositions as residue classes of boolean
that may presently form the assumed context of some relations of the form (b = 0) on an initially relation-free
other set of uncertain propositions & conditional proposi- boolean polynomial domain as generated by a finite set of

0 tions. This is appropriate in 2-stage experiments or in propositions of interest. This allows a new, unified devel-
other time-indexed information processing. opment of conditional propositions and iterated condition-

als and even deduction between conditionals, as well as

An Algebra of Conditional Information. Unlike boolean-like operations thereon, as previously formulated
the standard probability theory of unconditioned in Calabrese [4,5,6]. Conditionals that are themselves
propositions, there is no standard algebra of conditionals conditions for some other proposition act like their corres-

by which to manipulate or simplify a complex expression ponding material conditionals. The concepts of condition-
involving conditionals before performing a probability al implication (-5c) and probabilistically-monotonic impli-
calculation. Some researchers believe that it is cation (-<m) also reduce to boolean relations of this same
unnecessary to combine conditionals directly by "and" and form and thus are available for building deductively closed
"or". Others see no need for iterated (nested) conditionals. systems (algebraic filters) of conditional propositions.

The difference between P(c) versus P(c = 1), and between
Yet, even so common a parental admonition as "In the P(c v -d) versus P(c v --d = 1) is algebraically defined in
rain wear a raincoat, and when it's cold wear warm preparation for a two-stage experiment in which these
clothes" is already a conjunction of two conditionals must be distinguished. Conditional propositions are com-
which can be violated in either of two ways and satisfied bined by "and", "or" and "not" in a fresh account based on
by wearing an insulated raincoat in cold rainy weather. boolean filter theory and boolean relations. The probabil-
When relationships exist between the components of ity formula P(a v b) = P(a) + P(b) - P(a A b) is general-
conditionals, it can hardly be right to ignore them in our ized to conditionals in preparation for its later use in a
logical and probabilistic calculations. Furthermore, nested communication link example.p The applications section
conditionals are essential for deduction between includes three expert system (if - then - ) rules that result

in a circular, rule-chaining system but which upon being
3 This difference is P(a v -,b) - P(a)b) = (1 - P(b))(I - P(alb)) combined into a single rule, need no further chaining,
as expressed by P. Calabrese [3) in 1974. thereby avoiding an infinite do-loop at execution time.
4 D. Lewis (141 early showed that (alb) could not be assigned
the probability P(alb) and also be an element of the original Finite Theory of Conditional Information
boolean algebra containing a and b because then P(alb) = The development of conditional propositions presented
P((alb) A a)) + P((alb) A -,a)) = P((alb) I a) P(a) + P((alb) I -,a) = here will incidentally avoid the triviality situations
... 1 x P(a) + 0 x P(-a) = P(a), no matter what (except for exhibited by D. Lewis [14] by embedding the original
trivial cases) the propositions a & b. boolean propositions in a larger, generally non-boolean.
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space of ordered pairs of propositions. As exhibited in P. With respect to machine storage and computation time, an
Calabrese R3,4,5,6,7], the structure of these ordered pairs n-tuple of binary storage bits requires only n ordered
(conditional propositions) allows extended operations of binary storage places of computer memory and yet is
conjunction (A), disjunction (v), negation(-,) and condi- capable of taking the value of any one of 2n atoms.
tioning ( I ) in a way that is non-trivially consistent with Unfortunately, a proposition requires an ordered 2" - tuple
assigning each conditional proposition or event, (aib) the to be specified, corresponding to that subset of the 2n
probability P(alb); the probability that (alb) is a tautology atoms which the proposition contains. For n = 10, that
may have some other probability, requires a binary vector of length 1024. Thus for

purposes of computational tractability it may be necessary
Besides the ordered-pairs construction, conditional proposi- to divide large numbers of propositions into groups of
tions can be algebraically defined in several other equiva- related propositions with no group having more than a
lent ways and there is also more than one plausible (non- specified maximum. Alternately, or in addition, a
equivalent) way to define operations on the resulting cond- judicious choice of hierarchic variables (objects) can be
itionals. For an overview of these approaches see D. defined to manage computational complexity.
Dubois & H. Prade [9] and I. R. Goodman et al [12,131.
The approach here is consistent in spirit with earlier work Conditional Propositions
of G. Schay [191 and E. Adams [11, but also differs The conditional propositions (ordered pairs of
extensively in content and emphasis. This is still a propositions) will now be generated. In the context set
young topic. forth above, the process of conditioning a proposition c

upon another proposition b can be performed by simply
Propositions and Events setting to 0 all atoms of c in common with -,b.
For ease of application, especially in computers, we
restrict attention to the finite case. Let S be a finite set of Conditionalization Relations Rb. More formally,
n propositions a1, a2 ... , an of interest. Assume that temporarily fix an arbitrary proposition b in Z and form
none of the negations, --,ai, of these ai appears elsewhere the quotient boolean algebra (B/b) under the congruence
in the list of n initial propositions. In order to transcend relation Rb defined by the boolean equation (-lb = 0), as
the domain of discourse S, form W(xl, x2, .... xn), the follows: For any two propositions c and d in B , the
free boolean algebra of polynomials generated by these n ordered pair (cd) is defined to be in the relation Rb if c and
propositions (when taken as relation-free variables) under dare pair seting to 0 anytatmrelat Rh innegation (-i), conjunction (A), and disjunction (v). Thus d are equal after setting to 0 any atoms that they have in

common with --,b. This amounts to specifying -,b to be
S is the set of all finite disjunctions of conjunctions of n impossible, which is also to say that b is to be necessary.
free propositional variables xI, x2, .... xn or their nega- When propositions are represented as two-valued functions
ions. An arbitrary element of Z is the finite disjunction from Q1 to (0,1}, this is equivalent to setting b-'(0) = {Co
of any subset of (non-zero) atomic propositions co of the E 12: b(o) = 0) = (0), which is a form that easily extends
form elxl A e2x2 A ... A enxn where, for i ! n, each eixi to conditioning by conditionals.

is either xi or -xi. Let 0 be the set of all such atoms wo. Clearly, Rb is an equivalence relation and a congruence
0 has 2n elements and so S, which corresponds to the relation (=) using the fact that two propositions are equal

collection of all subsets of atoms of Q, contains 2 raised if and only if they have the same atoms.
to the power 2n propositions. The propositions of B also
correspond to the collection of all possible ordered 2n - Denote by (B/b) the quotient boolean algebra thus formed,

tuples of Os and Is. Alternately, B can be expressed as all and denote by (cib) the residue class in (B/b) containing
possible two-valued functions from D to (0,1). In the the proposition c.5 It follows that (cib) = (dlb) if and only

standard way assign probabilities to the atoms of fQ and so if c A b = d A b. We interpret (clb) as "c given b" or "c in

to the propositions of B. case b is true" or "c given -b is false" or as "c modulo
(--b = 0)", or "c modulo (b = 1)". Alternately, (cib) is c

For example, suppose S = (Blue (b), Red (r), Yellow (y)) "given the falsity of -lb" or "c given the truth of b".

represents the possible colors of an object. Then £1 = (b Note that with respect to the set of all atoms 0. (cib) is a

.,\ r A y, -,b A r A y, b A -,r A y, -,b A --r A y, b A r A --y, two-valued function restricted to the atoms in b. (cib)
,b A r A -y, b A -r A -y, -,b A -r A --y), which will be
abbreviated by dropping the A symbols and writing b' for 5 If b is already 0 before forming (1S/b) then (b lb)

-,b. So B contains all of the 28 subsets of Q. Initially degenerates to the singleton (0), which is the "inconsistent

assign probability 1/8 to each of the elements of Q. boolean algebra" in which I = 0.
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assigns 1 to those atoms in (c A b) and 0 to the atoms in constructed to transcend the initial set S of n propositions,
(-,c A b). (clb) is undefined (or "inapplicable") on the all subsequent conditioning is applied to this original
atoms in -,b because the construction of (cib) assumes that polynomial boolean algebra B. Thus all subsequent
they are no longer atoms having been set to 0, which is conditions are applied to B, and hence to all structures
not an atom. So, as early pointed out by B. De Finetti built from B including B/B. Of course if new
(8], with respect to the original boolean algebra B, a propositions are added to the initial set of propositions S,
conditional proposition (cib) has three truth "states": 1, 0 then B must be expanded accordingly.
and "undefined". For any proposition c, the probability of
(cib) is set to P(c A b) / P(b) so that P(btb) = 1. Consider first the special case ((alb) I c). (alb) is the

proposition a with all of its atoms in common with --b
The congruence class containing c is (cib) = [x E B: x A b set to 0, and so (alb) I c is the resulting proposition after

all of its atoms in common with -,c are also set to 0. But= c ^b) ( x e 2': x -- (c A b) v (--,b A y) for some y in
B} = cb v -,bB, where conjunction has been replaced by (--b = 0) and (--c = 0) if and only if (-b v --,c = 0). So2'juxtcbavposi wheeconjntion as bn r by A E((alb) I c) is the proposition a with all atoms in common
juxtapositionandb= by:ywith (-,b v -,c) = -(b A c) set to 0. So ((alb) I c) = (a I

The congruence class (bib) = (x e 2': X A b = b A b) x (bc)). This has been called the "import-export" principle.

e B: b < x) is a boolean filter, a deductively closed set of Iterated Conditionals of the form ((alb) I c).
propositions, because the class is closed under More forialy, for any two conditional propositions (aib)
conjunction, and also closed under boolean deduction <. and (glh) in B/B, the ordered pair ((alb), (glh)) is defined to

be in the relation Rc if (alb) and (glh) are equal after
The quotient boolean algebra B/b inherits a natural setting to 0 any atoms that their components a, b, g and h
deduction ordering < from B, namely that (aib) < (c0b) if have in common with -,c. Clearly this forms an
and only if ab < cb. equivalence relation on B/B. It easily follows that mod-

ulo Rc each conditional proposition (alb) is equivalent to
The Conditional Closure of B. Let B//B denote (acibc), which is equivalent to (albc). Thus ((alb) I c) = ((a
the set of all conditional propositions (alb) for arbitrary I be) I c), which is just (a I be) because -,c < -,(bc) and so
propositions a and b in B. 2/B will be called the the atoms of--,c are already zeroed as a part of the atoms of

-,(bc) being zeroed. It also follows that Rc is a congruenceconditional closure of 2'. Note that 2' is isomorphic to eaino lBbcuei (i)=(l) n o n
B/1,so hat /B nclues repesetatie o B.relation on B/B because if (alb) = (ggo), and so b = h and

BIl, so that B/ includes a representative of 2', Two ab = gh, then bc = hc and abe = ghc, and so (albc) = (glhc).
conditional propositions (alb) and (cid) are equivalent in
B/B if (b = d) and (a A b = C A d). Thus in general (aib) Iterated conditionalization by successive propositions
= (a A b I b), which has been called "reduction". However, amounts to setting additional atoms in fQ to 0 and thus the
the further extension of this equation to cond-itionals as process stays inside B/B, which contains all possible such
(alb) 1 (cld) = [(alb) A (cld)] I (cid) is questionable since (all) zeroing of atoms.
I (cid) can also be rendered as (a I b A (01d)).

Another way to formally derive that ((alb) I c) = (a I be) is
Continuing the colored object example, if it is known that via the algebraic congruence class representation:
the object has exactly one of the 3 colors then the free ((alb) I c) = ((ab v --,bB) I c) = (ab v --,bB)c v --cB =
boolean algebra B must be conditioned by the information abc v -,bcB v --,cB = abc v (-,bc v -,c)B = abc v
that (br v by v ry v b'r'y') = 0. So fQ becomes (br'y', (-,b v --c)B = abc v --(bc)B = (abc I bc) (albc).
b'yr', b'y'r} and B now has 23 = 8 non-zero elements. In
that situation the (conditional) probability of each of the Iterated Conditionals of the form (a (cid)). To
three non-zero elements becomes (1/8) / (3/8) = 1/3. say "given (cld)" or "in case (cld)" is to assume the non-

violation of (cld). Since (cld) is violated on (-c A d), this
Iterated (Nested) Conditionals. The virtue of this amounts to setting to zero all atoms of proposition a in
manner of development of B/b via boolean relations common with (--,c A d). So (a I (cld)) = (a I (c v -d))
defined by a boolean equation (-,b = 0) is that the because conditioning by (c v --A) has the same result.
conditionalization process can be naturally extended to
iterated conditional propositions of the general form (amb) I Conditionalization Relations R(cld). More
(cid). While there may be other ways to perform iterated
conditionalization, the intention here is to explore the formally, for any two propositions a and b in B, the

following type: Once l(x, X2 ... x) has been ordered pair (ab) is defined to be in the relation R(cld) if a

4



For publication in IEEE Tr SMC

and b are equal after setting to 0 any atoms that they have kind of implication between conditionals has been called
in common with (cldY 1(0), which is the set of atoms for conditional implication (-<c). As defined in [6],
which (cid) is violated. As in the simple conditional case,
this means that we must set (cld)-l(0) = (0). However, (alb) <-c (cid) if and only if (a v -,b) <(c v -d). (2)
(cld)-l(0) = {to) E : co is an atom of (-,c A d)). So the
atoms of (--C A d) are just the atoms to be set to zero, and (alb) -<- (cid) means that "if (a/b) is not false then (cld) is

thus (aI(d))= (aI(cv-d) since (cv-,d)=--,(--,CAd). not false." Equivalently, it means that "if (cid) is falsethus(a (d)) (aI ( v <l)sinc (cv -,d)= -,(-• ^d). then (alb) is false."

It is easy to see that R(cdd) is a congruence relation on S.

Note that with respect to probability, conditional
For example, returning to E. Adam's colored object implication. (<-,) only ensures that P(--cd) 5 P(--ab) or
example, upon learning that "if the object is not red then equivalently that P(a v ýb) !5 P(c v -d) not that P(aib) <
it is blue", the new (conditional) event for "blue (b)" is qiaetyta ~ 1 ) ~ 4 o htPabP(cld), which is stronger, in general requiring also that ab
(b I (b I -r)) = (b I (b v r)), and the new probability for b is < cd. When both (alb) <-c (cia) and ab <_ cd hold, the

P(b I (b v r)) = P(b) / P(b v r) = (1/3) / (2/3) = 1/2. implication has been called monotonic implication by the
author [6] since it is probabilistically monotonic. 6 The

Iterated Conditionals of the form ((alb) I (cd). conditional implication (alb) 5c (cld) can be expressed by
On the face of it, by observing the arrangement of the boolean equation (--cd)(a v -,b) = 0 and monotonic
parentheses, ((all) I (cld) is a conditioning of proposition implication (alb) :m (cid) can be expressed, for instance,
a by proposition b followed by a conditioning of the
result by (cld). Thus ((allb) I (did) is proposition a after its by the equation (--cdXa v _b) v (ab)--cd) = 0.
atoms in common with --b are set to zero and then after
its atoms in common with (--,C A d) are also set to zero, For Adams [1], (alb) can be "validly inferred" from (cid) if

which is just ((a I b) I (c v -,d) = (a I (b A (c V -,d))), ad and only if (cid) has high conditional probability whenever
(alb) has high conditional probability, and this is

the latter conditional proposition is in S1B. Thus Z/B is equivalent to monotonic implication, but Adams
closed under such iterated conditioning. We have then that generalizes by allowing the premise to be any finite

I( conjunction of conditionals.•J((aib) I(ckl) = (aI(bA^(c v-,d))) (1)

Two conditionals (alb) and (cld) are said to be conditionally

Boolean Relations. The conditional closure 1/B can equivalent (=c), that is, equivalent as conditions, if and

be conditioned by any boolean relation which is only if (a v -,b) = (c v -d).
expressible in the form "b = 0". These allow known rela-
tionships between the propositions of B such as "c : d", If (alb) 5c (cld) then (cid) I (alb) is a tautology because (ckd)

"cd = 0", and "c v d = I" and similar relations on condi- I (alb) = (c I d A (a v -ýb)) = (c I d A (c V -d)) = (C I d A C) =

tionals to be incorporated in terms of conditionalization. (d AcId Ac)= ( Id A c). Conversely, if (cid) I (alb) is a
tautology then (a v -,b) _ (c v --d) because then (cid) I (all)This also opens up connections between this theory of = (lid) I (all,) and so cd(a v --,b) =d(a v -1b), which means

conditional event algebra / conditional probability

(CEAPL) and the work of J. Hooker (11] concerning tech- d(a v -,b)•< c, which means (a v -b) < (c v -d).
niques for solving systems of boolean equations; in many
situations, a set of these boolean equations will need to be Note that since (c v -1d) = -, v -,(--,c), a conditional
simultaneously solved in order to "define the condition" as proposition (cid), "if d then c", is conditionally equivalent
specified by a set of known boolean relationships between to its contrapositive (-d 1 --c), "if not c then not d". (cid)
specified propositions and conditional propositions. =c (-A I --c) because (d < c) if and only if (-c < -Ad). This

is, after all, a fact of everyday mathematical life (except
Deduction for those who resolutely abhor all proofs by
Since a conditional proposition (cid), when acting itself as contradiction.) However, (cid) * (-d I -,c) and P(cld) #
a conditional, is equivalent to its corresponding material P(-d I -,c) except in very special cases.
conditional (c v -,d), a collection (allbl), (a21b2), (a31b3),
... (amlbm) of conditionals generates an algebraic filter, Since by definition every deductively closed set D contains
namely the deductively closed system generated by the (all,) A (cld) whenever it contains both (alb) and (cid), a set
proposition (al v -bl) A (a2 v -•b2) A (a3 v -b3) A ... A

(am v -bm). In particular, given one conditional (aib), a 6 I.R. Goodman (121 first showed that this implication
second conditional (cid) is also deductively "given" (that relation between conditionals is also the weakest which is

is, a tautology) if and only if (a v --b) < (c v -,d). This probabilistically monotonic for all probability measures.

5



For publication in IEEE Tr SMC

of m conditionals deductively entails all 2m of its subset Then J A J'= (0), J v J' = (I), and (')' = J. This
conjunctions. D3 also contains (cid) whenever it contains allows P to apply also to the likelihood of tautologies,
(alb) and (alb) <x (cid) holds, where relation <x is <-c, 5m, which is different from the likelihood of propositions.
or some other boolean deduction relation in the sense that Deduction between filters "if J is a tautology then K is a
it extends < on B/b for every b E B. That is, (alb) -5x tautology" has been called necessary implication (<n), the
(cib) if and only if ab:5 cb. Furthermore, modus ponens "entailment of necessity": if J = (1) that K = (1). In
is also valid in the conditional closure in the sense that general (alb) <n (cid) means that (b < a) entails (d < c).
(alb) A [(cid) I (alb)] = (aib) A (cid). Other Operations on Conditionals

All this reduces the problem of deduction in the realm of As mentioned previously, operations of negation

conditionals to the well-understood boolean deduction, conjunction (A) and disjunction (v) have been plausibly
much like the system of N. Nilsson [15], in which all defined on the conditionals of B/B in more than one way.
conditionals (alb), not just those acting as conditions, are I. R. Goodman (121 has shown that choosing such an
reduced to their corresponding material conditionals (a v operation on BIB corresponds to choosing a 3-valued truth
--sb). In this context, probabilities of conditionals (cid) are table on B/B and conversely. Here, the main considera-
probabilities of their corresponding material conditionals tion is to be consistent with probability while developing
(a v -,b) since both are false on the same set of atoms, an algebra of logical conditionals which is consistent with
namely those of (--a A b). That is, P( (alb)) = P(a v --b). common usage. The spirit follows the development of

conditionals by E. Adams (11 although it also differs
Tautologies. In view of the above, a probability can be significantly. For instance, recently Adams has focused on
either of the following two important types: meta-conditionals like P( P(cld) = 1) ), the probability that

c is highly likely given d. This is a generalization of
1) Probability that a proposition is true, and P((cld) = 1), the probability that (cid) is a tautology.
2) Probability that a proposition is a tautology.

Negation. Within any quotient boolean algebra B/b,
For a proposition c, these types of probability are each conditional proposition (alb) has a negation -,(alb),

Swhich is just (-%adb) because (alb) v (--alb) = (lIb), and (aib)1) P(c) = P{<o E f: co is an atom of proposition c}

= P(c '(1)), and A (-,alb) = (0ib), where (lib) and (01b) are the I and 0 re-

2) P((c)) = P(proposition c is a tautology) =P(c = 1) spectively of B/b. Furthermore, P(alb) + P(-,ab) = 1. So
= P(principle filter generated by (c) is given), it is natural to keep these conditional negations in B/b:

For conditionals, the first type is P(cld) = P(cd) / P(d) = --(aib) = (-ab) (3)
P((cd)-1 (1)) / P(d-l(1)), called the conditional probability,
while the second type is P((cld) is a tautology) = P(d < c) However (alb) and (--a*) are not negations with respect to
=P(c v -4 = 1). each other in B/B except in the case that b = 1. The

negation of a (principal) filter generated by the single
Again, in the second type, P( (cid) = (lId)) =P( (c v -,d)= proposition b is (-,b) = {x E B: -,b < x) and the
1 ), as in the standard logical reduction, because (did) is a congruence class containing -.,a is (-a).
tautology if and only if (c v -,d) is a tautology. In the
first type, P(cld) < P(c v --d) except when P(d) or P(cld) is Disjunction. Intuitively speaking, the compound
1. Not noticing this distinction has been a great source of conditional "if b then a, or if d then c", in symbols (alb) v
confusion between logicians and probabilists. (cid), is true in case either conditional is true, and it is

defined (or "applicable") in case either antecedent, b or d,

This requires P to be extended to the space of filters of B, is true. If (alb) v (cid) is defined but not true then it is
which form a boolean algebra. For filters J and K, false. Since (alb) is true on ab and (cid) is true on cd, it

follows that

(v K) (avb: aE J, bE K) J cK(alb) v (cld) = (ab v cd I b v d). (4)
(J A K) = (a b:aE J,bE K) 1 J u K

F' = (b E B: -,a 5 b, for all a c 1) More formally, the deductively closed set (or filter)
(0) =B associated with the conditional proposition (aib) is (b) =

(x (1) B: bx!5:b x)andthatof(cld)is(d)={xE B:d!<x). If
either of these two deductive systems is "given", then the
resulting deductive system that is "given" necessarily in-
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cludes only those propositions that are common to (b) and (1, 3, 6} 1 (1, 2, 3, 4, 6}. The conditional probability is
(d). But the largest filter included in both filters (b) and (d) therefore 3/5, which can also be determined by checking
is (b) r) (d) = (b) v (d) = (b v d). So (alb) v (cld) is defined individual atoms.

on (b v d). Within this domain of definition, (alb) v (cld) According to these operations, the conjunction of two
is true on (ab v cd). So equation (4) follows. Alternately, conditionals (alb) and (cld) conditionally implies either of
if all atoms in common with --b are set to zero, or all the conjuncts. That is, (alb) A (cld) <-c (alb). However,
atoms in common with -4 are set to zero, then the atoms the disjunction of two conditionals is not in general
that are actually set to zero in either case are just those in conditionally implied by each of its disjuncs. That is,
common with (--4 A -,d). But (-,b A --,d) = 0 if and only if cniinlyipidb aho t ijnt.Ta s

(alb) :5 (alb) v (crd) does not hold in general, requiring in
bv d) = 0. So again, (alb) v (cld) is defined on (b v d). addition that -,cd < b, namely that if (cld) is false then

(alb) is defined. Nevertheless, (aib) A (cld) < (alb) v (cid)
Conjunction. As in the case of disjunctions, (aib) A since both are in B/(b v d). In this regard, it turns out
(cld) is defined when either (alb) or (cid) is defined, that is, that except for special cases, we generally have 7

on (b v d). Within its domain of definition, (alb) A (cld) is
violated if and only if either (--Qa b) v (-c A d) is true. (alb) A (cld) < (alb) v [(alb) A (cld)] < alb) v (cld)
Otherwise, on [(-A^ b) v (--C A d)] = (a v --b)(c v --d).

it is not violated. If it is defined and not violated, then it where the middle expression is also in 2/(b v d). This
is true. It follows that middle expression is true whenever (alb) is true, even if

(did) is false, or when (aib) is undefined and (cld) is true,
(alb) A (cld) = (a v --bXc v -d) I (b v d) (5) but it is violated when (alb) is false and (cld) is true.

= (abcd v ab--d v -bcd) I (b v d) Similarly for (alb) A [(alb) v (cld)].

= [(abXc v --d) v (a v -bXcd)] I (b v d).
Note that this property, for example, allows (01b) A I = b

Note that the right hand side of equation (5) reduces to that to have larger probability in general than (01b), which
of equation (4) when ab < (c v -,d) and (cd) < (a v -,b). must have probability 0. Conjunction and disjunction of
These are equivalent to saying (ab)(-,cd) = (-,ab)(cd) = 0. conditionals does not here preserve probability in the

A sufficient condition for this is that bd = 0, that b and d same way. (0fb) is zero only in M/b. Outside b, it has no
are disjoint. So in these situations the conjunction of affect; it is "inapplicable". Some of the results of the
conditionals may be equivalent to the disjunction of cond- preceding pages can be summarized as follows:
itionals without the component conditionals being equal.

Theorem: Let S be any finite set {al, a2 ... , an) of n
The conjunction of two conditionals can also be derived boolean propositions, no two of which are negations of
by requiring that the De Morgan formulas should hold in one another, and let P be a probability assignment to the
BIB: In that case (alb) A (cid) = -,[(--,adb) v (--cld)] = 2n (atomic) elements of P = (all conjunctions of the n

-[(-,ab v -,cd) I (b v d)] = (a v -,b)(c v -,d) I (b v d), members of S or their negations). Then the relation-free

which reduces to (abed v ab-,d v -,bed) I (b v d). boolean algebra B generated by n free boolean variables
Similarly, equation (4) can be derived from equation (.1) xi, x2 .... xn has a conditional closure B/B that includes
and the De Morgan formula. Alternately, the De Morgan an isomorphic copy of the boolean algebra generated by S;
formulas can be proved from equations (4) and (5). furthermore, B/5B is closed under the operations of

conjunction (A), disjunction (v), negation (-,) and
The disjunction and conjunction of conditionals consti- conditionalization ( I ) according to equations (3), (4), (5)
tutes a combining of partially applicable information, as and (1) respectively, and so any such operation on S is
when data bases are built up from overlapping pieces of
information from different sources or circumstances represented in B; and finally, for all (ab) in ,

P(alb) = P(a A b) / P(b).
For example, consider the familiar experiment of rolling a
single die once with atoms fQ = (1, 2, 3, 4, 5, 6). B is Note that a formal disjunction of the congruence classes

the collection of subsets of fQ. A wager is made that "if (ab v -b1B) and (cd v --dB) does not result in equation (4),

the roll is <3 then it will be odd and if the roll is even but instead yields (ab v -,bB) v (cd v -,dB) = (ab v cd
then it will a 6." This can be represented as (odd I S3) A v --,bB v -MB) = (ab v cd) v (-b v -,d)B (ab v cd)

U (6 1 even) = (0 v (odd)(<_3)(-(even)) v -,(<3X6Xeven)) I v -,(bd)5 = (ab v cd I bd), which is the disjunction

(:93 v even) =Q,3) v (6) 1 (1, 2,3,4,6) = 7 (alb) <x (cld) means that (alb) -x (cid) and (alb) •,x (cid).
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operation chosen by G. Schay [191 to go with the con- Applications
junction operation (5). This derivation separates the con- A probabilistically faithful algebra of conditional
sequent (ab) from its antecedent --bZ in a way that leads to propositions will be useful for analyzing complex

the conditional (ab v cd I bd), which is defined o conditional propositions, for simplifying expert system
rules, for analyzing iterated (nested) conditional

both antecedents are true. By similar development the rucis , for combing and simplifyndatabconstructions, for combining and simplifying data bases,
formal conjunction of the two congruence classes (ab v and for analyzing common natural language constructions.

--,b) and (cd v -ASI) yields the conditional proposition In the following paragraphs somewhat more elaborate

(abcd I bd v -,ab v -,cd), which is the conjunction oper- examples of these will be illustrated.

ation favored by I.R. Goodman, et al (13]. This condi- Complex Conditional Propositions
tional, which is undefined outside (b v d), and within (b v TMe disjunction or conjunction of conditionals naturally

d) is undefined on (ab-,d v -'bcd) is the greatest lower arises or is useful in various circumstances.
bound of (aib) and (cid) with respect to <m, and is also
conditionally equivalent (=c) to the right hand side ofequa- Communication Link Example. Suppose a
tion (5). The result of the disjunction operation of Good- military planner is estimating the conditional probability

man et al upon (aib) and (dd) is the conditional (ab v cd I that both communication links, Ll and L2 , that are
ab v c v bd), which is the least upper bound with respe connected in series, will survive if they are attacked. The
to v c d), whind is alsocondtiony l es uiaebont wito resct planner therefore wants to calculate the probability that "if
to d , and is also conditionally equivalent to Schay s Ll is attacked (b) or L2 is attacked (d) then both LI will

disjunction mentioned above. When b and d are disjoint survive (a) and L2 will survive (c)." This is just the
__- in'rction yields a tautology, the -filter generated by codtna(c)Ibvd)Nw

ab v cd, namely, (1 Iab v cd). For instance, for the conditional (ac) I (b v d). Now

compound "if heads comes up then I win or if tails comes
up then I lose" this disjunction yields the filter (and (ac) I (b v d) = (ac) I (bd v -bd v b-4)

congruence class) of all propositions entailed by the - (ac I bd) v (ac I -,bd) v (ac I b-d),
proposition "heads comes up and I win or tails comes up
and I lose". By contrast equation (4) yields the simple and so by equation (9),
proposition "heads comes up and I win or tails comes up
and I lose". P((ac) I (b v d)) = P(bd Ibv d) P(ac Ibd)

Probabilities. By taking probabilities of equations (4) + P(--bd I (b v 0)) P(ac I -,bd)

and (5) for disjunction and conjunction and doing some + P(b--l I (b v d)) P(ac I b-di).

rearranging, the following formulas for the disjunction and
conjunction of conditionals are obtained in terms of Since (a I -,b) = (1 I -,b), therefore (a = 1) I --b. So (ac I
standard conditional probabilities: --bd) = (ac I -,b) I d = (c I -,b) I d = (c I -,bd) = (cld) I

(-,b). If the survival of one link is (conditionally)

P((alb) v (cld)) = P(b I b v d) P(alb) (6) independent of attack on, or survival of, the other link (a
ia J. Pearl [171), then P( (cid) I (-,b)) = P(cld). So P(ac I

+ P(dIbvd)P(cld) - P(adbvd) --bd) = P(cld). Similarly P(ac I b--d) =P(alb) and P(ac I bd)

= P(alb)P(cld). So, since P(a"b) = 1 P(c-d),
P((alb) A (cld)) = P(O I b v d) P(a-db) (7)

+ P(d I b v d) P(c-,bld) + P(abcd I b v d) P((ac) I (b v d)) = P(bd I b v d) P(alb)P(id)
+ P(--,bd I (b v ci)) P(ckl)

Note that the last term in :hese two formulas can be + P(bd I (b v d)) P(alb)

written as P(bd I b v d) P(ab I bd). An important special

case of these formulas occurs when ab < -,d and cd • -b, which is a formula whose values can be estimated
like when b and d are disjoint. Then they both reduce to: according to the importance of each term.

P((alb) v (cld))= P((alb) A (cld)) = (8) If instead, the links are connected in parallel, then

P(b I b v d) P(alb) + P(d I b v d) P(cld). communication will survive as long as at least one link
survives. So the relevant compound conditional is

More generally, if bh, b2 , b3 ... , bm are pairwise disjoint (avc01(bvd) (avc)I(bd) v (avc)I(b-4v-bd)

and denoting (bl v b2 v b3 v ... v bm) by b, then - (a v c) I (bd) v ( I (b-d v --bd)).

P((allbl) v (a21b2) v ... v (amlbm)) (9) The second equalit) follows since one link is sure to
P(b1lb)P(alIbl) + P(b2Ib)P(a 21b2 ) +... + P(bmlb)P(amlbm) survive if not both are attacked, and so by equation (9),

8
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P((avc)I(bvd)) =P((avc)Ibd)P(bdI(bvd)) Complex Conditional Example. Consider the
+ (1) P((b-"d v --bd) I (b v d)) familiar experiment of rolling a single die once and

= P((a v c)lb Pd I (b v d)) + (I - P(bd I (b v d)] observing the value r facing up from I to 6. What is the
= I - P(bd I (b v d)) (I - P((a v c)0 d)J conditional event (CD) and conditional probability P(CID)
= 1 - P(bd I (b v )) P(-,a--c I bd), that [(if 3,5 r5 5 then r is odd) or (if 4• r then r is

even)] and (if r is even then r ! 4]? In conditional
which is I minus the probability that both links will be notation, [ (odd 13:5 r5 5) v (even 145 r) J A [ r!5 4 1
attacked given one is, times the probability that both even I =? And what is its probability ?
links will not swvive given both are attacked. If link
non-survivaL are conditionally independent, then Solution: First [ (odd I 3 < r 5 5) v (even 1 4 < r)] =
P((a v c) I lo v d)) = I - P(bd I (b v d)) P(-,alb)P(-,-cd). [(odd)(3< r5 5) v (even)(4 <r)] I [(35 r5 5) v (45 r)]

= [(3v 5)v (4 v6) I ( 3 _<r )l ( (3 <_r) I (3< r)].
Expert System Example. Tin A. Nguyen et al [16] Furthermoev ((3v•6) 1 (35 r A r) 1 evn -

have given a nice account of the many difficulties arising Furthermore, V3 !5 r) 1 (3 < r )) A [(r 5 4) 1 even) =

in expert rule systems including circularity and [(3 < r) v (3 5 r)'] A f(r <4) v (even)'] I [( 3 .<r ) v even]
consistency problems when a list of rules is left = (r < 5) I (2 5 r) = (2 5 r 5 5) 1 (2 5 r), which is (CID)
uncombined and unsimplified before chaining of the rules in reduced form. So P(CID) = 4/5.
is attempted. Such a conjunction of "if - then - " rules
can cause a computer to execute an infinite do-loop. For Example Distinguishing P(a) and P(a = 1). An
example, on page 72 they give an diagnostic example of experiment consists of flipping a fair coin once and then
three rules with a circularity problem: Denote the tossing either an ordinary 6-sided die once if "heads"
following propositions as indicated: comes up on the coin, or tossing a (4-sided) tetrahedron

once if "tails" comes up on the coin. The faces of the die
T = proposition that patient has a temperature > 1000 F are numbered I through 6 and those of the tetrahedron I
F = proposition that patient has a fever through 4. (The side of the tetrahedron touching the floor
S = proposition that patient has flat pink spots is chosen by the toss.) The set of possible outcomes is fQ

S M = proposition that patient has measles. = (HI, H2, H3, H4, H5, H6, TI, 12. T3, T4); Z is the

Rule 1: If T then F collection of all subsets of Q; and the probabilities assign-
Rule 2: If(FandS) thenM ed tof Qare P(Hi) =(1/2)(1/6) = 1/12 for i = I to 6, and
Rule 3: If M then T P(Ti) = (1/2)(1/4)= 1/8 for i I to 4. Let H denote (HI,

112, H3, H4, H5, H6) and let T denote (TI, T2, T3, T4).
Clearly, if these rules are chained, then rule 1 chains to The event (or proposition) "<5" is (HI, 1H2, H3, H4, TI,
rule 2, rule 2 chains to rule 3, and rule 3 chains back to T2, T3, T4) and its probability is 1 - 2/12 = 5/6. Note
rule 1, and the computer program may never end! But if that P(<5 I H) = 2/3 and P(<5 I T) = 1. Furthermore,
these three rules are first conjoined by equation (5), P("<5" is certain I 1) = P(("<5" = 1) I T) = I and P(("<5"
(FIT)A(MIFS)A(TIM)=(F) A (T I M) A (M I FS) = 1) I H) = 0. So P(<5 is certain after the coin-flip) =
= ((FT) I (T v M)) A (M I FS) = FTM-,(FS) v P(C<5" = I after the coin flip) = P("<5" = 1) I H) P(H) +

P("<5"=l) IT)P(T)=0xP(H) + IxP(T)=P(T)=
(-,T---JVMFS v FTMS I ( T v M v FS) = FT(-,S v M) I 1/2. Thus P("<5" after coin flip) = 5/6 but P("<5" is
(T v M v FS). So the three rules are equivalent to a certain after coin flip) = 1/2.
single rule that "if a patient has a temperature over 100°
F, or measles, or a fever and flat red spots, then the Something very similar is going on in the example of E.
patient has a fever and a temperature over 1000 F and Adams [1]. For instance, one can say above that the
either measles or no flat red spots." By thus combining probability that "<5" is highly likely (in fact certain!) is
the rules, there is no need to chain and no danger of an 1/2 but the probability of "<5" is 5/6, which might not
infinite loop. (Self-chaining can be disallowed.) be considered "highly likely" and is anyway a very

different probability.
Throughout the above computation there is no
assumption that the expert rules are wholly true, there Acknowledgement. I would sincerely like to thank
may be a probability of each one holding, and these Dr. Robert Manka of the National Research Council and
probabilities are not violated by the computations. Dr. A[ Gordon and Ms. Sunny Conwell of NRaD for
Furthermore, the probability of any one, or of the administrative support, and to thank all my colleagues
conjunction of two, or of all three of the rules can be doing research on this topic, especially 1. R. Goodman,
calculated in principle. For instance, the probability of all who has with unceasing energy, helped to develop this
three is P(FT-,S v FTM) / P(T v M v FS). field and to provide me with critical analysis of my work.
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